Section 2.1
Exponential Functions
Q/A

- Worksheet
- Homework
Two basic exponential models:

\[y = Pe^{rt} \]

\[y = p_0a^t \]

\[a = e^r \]

\[\Rightarrow r = ? \]

1) \[y = 3e^{2t} = 3(e^2)^t = 3a^t \]

\[\text{where } a = e^2 \]

2) \[y = 6\cdot4^t = 6\cdot2^{2t} \]
Solving $2^x = 16$ vs. $2^x = 24$

\leftarrow need \log_2
Modeling population growth

1 hour: \(10 \times 2 \times 2 = 40\)

3 hours: \(10 \times 2 \times 2 \times 2 \times 2 \times 2 = 10 \times 2^6 = 640\)

\(t\) hours: \(10 \times 2^t = 10 \times 4^t\)

\(P = 10e^{rt}\)
Modeling drug concentration

\[P = P_0 e^{-rt} \]

Graph showing concentration over time,

\(P \) vs. \(t \)
Other questions from reading?